3.4.23 \(\int \frac {\sqrt {1-c^2 x^2}}{(a+b \cosh ^{-1}(c x))^2} \, dx\) [323]

Optimal. Leaf size=146 \[ -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac {\sqrt {1-c x} \text {Chi}\left (\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right ) \sinh \left (\frac {2 a}{b}\right )}{b^2 c \sqrt {-1+c x}}+\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c \sqrt {-1+c x}} \]

[Out]

cosh(2*a/b)*Shi(2*(a+b*arccosh(c*x))/b)*(-c*x+1)^(1/2)/b^2/c/(c*x-1)^(1/2)-Chi(2*(a+b*arccosh(c*x))/b)*sinh(2*
a/b)*(-c*x+1)^(1/2)/b^2/c/(c*x-1)^(1/2)-(c*x-1)^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)/b/c/(a+b*arccosh(c*x))

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {5904, 5887, 5556, 12, 3384, 3379, 3382} \begin {gather*} -\frac {\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c \sqrt {c x-1}}+\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2])/(b*c*(a + b*ArcCosh[c*x]))) - (Sqrt[1 - c*x]*CoshIntegral[(
2*(a + b*ArcCosh[c*x]))/b]*Sinh[(2*a)/b])/(b^2*c*Sqrt[-1 + c*x]) + (Sqrt[1 - c*x]*Cosh[(2*a)/b]*SinhIntegral[(
2*(a + b*ArcCosh[c*x]))/b])/(b^2*c*Sqrt[-1 + c*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5887

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Cosh
[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5904

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Simp[Sqrt[1 + c*x]
*Sqrt[-1 + c*x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[c*((2*p + 1)/(b*(n + 1)
))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCo
sh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-c^2 x^2}}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {\sqrt {-1+c x} \sqrt {1+c x}}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {(1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\left (2 c \sqrt {1-c^2 x^2}\right ) \int \frac {x}{a+b \cosh ^{-1}(c x)} \, dx}{b \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {(1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\left (2 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {(1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\left (2 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sinh (2 x)}{2 (a+b x)} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {(1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\sqrt {1-c^2 x^2} \text {Subst}\left (\int \frac {\sinh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {(1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac {\left (\sqrt {1-c^2 x^2} \cosh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (\sqrt {1-c^2 x^2} \sinh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {(1-c x) \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c \sqrt {-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}-\frac {\sqrt {1-c^2 x^2} \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c x)\right ) \sinh \left (\frac {2 a}{b}\right )}{b^2 c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {1-c^2 x^2} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 121, normalized size = 0.83 \begin {gather*} -\frac {\sqrt {1-c^2 x^2} \left (b \left (-1+c^2 x^2\right )+\left (a+b \cosh ^{-1}(c x)\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right ) \sinh \left (\frac {2 a}{b}\right )-\left (a+b \cosh ^{-1}(c x)\right ) \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )\right )}{b^2 c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((Sqrt[1 - c^2*x^2]*(b*(-1 + c^2*x^2) + (a + b*ArcCosh[c*x])*CoshIntegral[2*(a/b + ArcCosh[c*x])]*Sinh[(2*a)/
b] - (a + b*ArcCosh[c*x])*Cosh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])]))/(b^2*c*Sqrt[-1 + c*x]*Sqrt[1 +
c*x]*(a + b*ArcCosh[c*x])))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(360\) vs. \(2(132)=264\).
time = 4.74, size = 361, normalized size = 2.47

method result size
default \(\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-2 \sqrt {c x +1}\, \sqrt {c x -1}\, x^{2} c^{2}+2 c^{3} x^{3}+\sqrt {c x -1}\, \sqrt {c x +1}-2 c x \right )}{4 \left (c x +1\right ) \left (c x -1\right ) c \left (a +b \,\mathrm {arccosh}\left (c x \right )\right ) b}-\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \expIntegral \left (1, 2 \,\mathrm {arccosh}\left (c x \right )+\frac {2 a}{b}\right ) {\mathrm e}^{\frac {b \,\mathrm {arccosh}\left (c x \right )+2 a}{b}}}{2 \left (c x +1\right ) \left (c x -1\right ) c \,b^{2}}-\frac {\sqrt {-c^{2} x^{2}+1}\, \left (2 \sqrt {c x +1}\, \sqrt {c x -1}\, b c x +2 b \,c^{2} x^{2}+2 \,\mathrm {arccosh}\left (c x \right ) \expIntegral \left (1, -2 \,\mathrm {arccosh}\left (c x \right )-\frac {2 a}{b}\right ) {\mathrm e}^{-\frac {2 a}{b}} b +2 \expIntegral \left (1, -2 \,\mathrm {arccosh}\left (c x \right )-\frac {2 a}{b}\right ) {\mathrm e}^{-\frac {2 a}{b}} a -b \right )}{4 \sqrt {c x -1}\, \sqrt {c x +1}\, c \,b^{2} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}+\frac {\sqrt {-c^{2} x^{2}+1}}{2 \sqrt {c x -1}\, \sqrt {c x +1}\, c \left (a +b \,\mathrm {arccosh}\left (c x \right )\right ) b}\) \(361\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/4*(-c^2*x^2+1)^(1/2)*(-2*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2*c^2+2*c^3*x^3+(c*x-1)^(1/2)*(c*x+1)^(1/2)-2*c*x)/(c
*x+1)/(c*x-1)/c/(a+b*arccosh(c*x))/b-1/2*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,
2*arccosh(c*x)+2*a/b)*exp((b*arccosh(c*x)+2*a)/b)/(c*x+1)/(c*x-1)/c/b^2-1/4*(-c^2*x^2+1)^(1/2)/(c*x-1)^(1/2)/(
c*x+1)^(1/2)*(2*(c*x+1)^(1/2)*(c*x-1)^(1/2)*b*c*x+2*b*c^2*x^2+2*arccosh(c*x)*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(-
2*a/b)*b+2*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(-2*a/b)*a-b)/c/b^2/(a+b*arccosh(c*x))+1/2*(-c^2*x^2+1)^(1/2)/(c*x-1
)^(1/2)/(c*x+1)^(1/2)/c/(a+b*arccosh(c*x))/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-((c^2*x^2 - 1)*(c*x + 1)*sqrt(c*x - 1) + (c^3*x^3 - c*x)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^3*x^2 + sqrt(c*
x + 1)*sqrt(c*x - 1)*a*b*c^2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x - b^2*c)*log(c*x
 + sqrt(c*x + 1)*sqrt(c*x - 1))) + integrate(((2*c^2*x^2 + 1)*(c*x + 1)^(3/2)*(c*x - 1) + 2*(2*c^3*x^3 - c*x)*
(c*x + 1)*sqrt(c*x - 1) + (2*c^4*x^4 - 3*c^2*x^2 + 1)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^4*x^4 + (c*x + 1)*(
c*x - 1)*a*b*c^2*x^2 - 2*a*b*c^2*x^2 + 2*(a*b*c^3*x^3 - a*b*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + a*b + (b^2*c^4*
x^4 + (c*x + 1)*(c*x - 1)*b^2*c^2*x^2 - 2*b^2*c^2*x^2 + 2*(b^2*c^3*x^3 - b^2*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1)
+ b^2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x))**2,x)

[Out]

Integral(sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {1-c^2\,x^2}}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x))^2,x)

[Out]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x))^2, x)

________________________________________________________________________________________